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A technique is described for measuring the local phase speed in a turbulent flow. 
The technique has been used to measure the phase speed of the Fourier compo- 
nents of the longitudinal velocity fluctuations in grid turbulence. These measure- 
ments are unique in that the probe spacing is only twice the Kolmogoroff length 
scale. The velocity fluctuations were measured with linearized constant- 
temperature hot-wire anemometers, the outputs of which were digitally sampled 
and recorded in real time. Digital Fourier analysis techniques were then used to 
calculate the cross-spectral density of the two velocity measurements. From this, 
the phase, phase speed, and coherence were calculated. The coherence has been 
used to estimate the variance of these measurements. 

1. Introduction 
It is well known that the propagation speed of velocity fluctuations in shear 

layers depends both on spatial location and frequency. Measurements of space- 
time correlations in shear flows, such as those of Fisher & Davies (1964) and 
Favre, Gaviglio & Dumas (1967), have led to various definitions of the apparent 
propagation speed. All previously reported measurements have been made at  
such large spatial hot-wire separations that temporal fluctuations have reduced 
the cross-correlation for optimum time delay to values significantly less than 
unity. Thus, these measurements of convection velocity were non-local in the 
sense that the spatial fluctuation patterns observed at both probes were not 
exactly the same. The preceding comments also apply to cross-correlations of the 
filtered signals made to determine the frequency dependence of the convection 
velocity. 

The present paper discusses an initial attempt to define and measure a local 
propagation speed of Fourier components of the velocity field by comparing 
velocity fluctuations at  two points that are separated by a distance comparable 
with the smallest characteristic length scales for temporal change of the fluctua- 
tions, so that the correlation between the two velocity signals is essentially unity. 
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Such a technique will be particularly useful in investigating free jet flows, where 
the propagation speed varies rapidly with distance (Stegen 1967). 

1.1. Measurement technique 

The propagation speed of fluctuations can be measured as a function of frequency 
by calculating the phase speed C(f) from the phase difference #(f) between the 
two signals, 

where d is the transducer spacing in the direction of the mean flow. 
This measurement is significant only if the coherence (defined in 3 3.1) between 

the signals is high. Since the coherence is frequency dependent, this condition is 
stronger than requiring that the cross-correlation be high. The condition of high 
coherence will be satisfied if the turbulence pattern has been convected over the 
distance d essentially unchanged by the temporal fluctuations. In  such a case we 
can identify C(f) as the true phase speed of those Fourier components of the 
turbulent energy spectrum. 

To determine the local propagation speed of turbulent fluctuations one should 
measure the phase speed with two probes separated by a distance comparable 
to the smallest scale of interest. For velocity fluctuations the relevant small-scale 
parameter is the Kolmogoroff length L, = (e/v3)-’, where e is the dissipation rate. 
To test the limitations of the method, the probes were spaced about 2Lk apart. 

We chose to make these initial measurements in an unsheared, low-intensity 
grid-generated turbulent field to avoid some of the possible complications in 
interpretation noted by Lumley (1965). For this flow field we expect the phase 
speed to be independent of frequency. Prenkiel & Klebanoff (1 966) have measured 
higher-order space-time correlations under similar experimental conditions. 
Although their second-order space-time correlations were consistent with 
Taylor’s hypothesis, their results for higher-order correlations led them to specu- 
late that even for grid turbulence the propagation speed may depend on the eddy 
size. When they compared their measured space-time correlations with one-point 
time correlations displaced appropriately using Taylor’s hypothesis based on 
the mean speed, they found that odd- and even-order correlations were displaced 
in opposite directions from the nominal position predicted by the frozen pattern 
hypothesis. Reasoning that the odd-order correlations may be governed by a 
different range of eddy sizes (weighted toward the large eddies) from the even- 
order correlations, they inferred that the propagation speed might be a function of 
eddy size. From their limited amount of data no general trends were apparent. For 
example, their odd-order correlations are sometimes displaced downstream, indi- 
cating that for the particular sample of data the apparent translational velocity is 
smaller than U ,  whereas for other samples and different probe spacings the same 
correlations are shifted upstream, indicating a velocity somewhat greater than U. 

More recently, Corrsin & Comte-Bellot (private communication) have made 
extensive measurements of filtered second-order space-time correlations in grid 
turbulence. Their results again verified Taylor’s hypothesis for this flow field. 

The probe spacing used here was extremely small compared to the smallest 
spacing ( w 21LK) used by Frenkiel & Klebanoff (1966). This results in phase 

Q(f) = W4#(f), 
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differences of only 4O a t  l00Hz. The usual analogue techniques are not easily 
adapted to measurement of such small phase differences. Instead, the phase has 
been calculated from the cross-spectral density by digital techniques. The cross- 
spectral density was measured using the digital harmonic analysis method 
described by Van Atta & Chen (1968~).  The essence of the method is to use the 
‘fast Fourier t ra i i~form~ algorithm of Cooley & Tukey (1965) to  obtain the 
discrete Fourier transform of a sampled time series. The analysis of the data then 
proceeds along the usual lines of digital spectral analysis (see, for instance, Munk, 
Snodgrass & Tucker 1959). 

2. Experimental arrangement 
The experiments were carried out in the 76 em by 76 em by 9 m test section of 

the low-turbulence wind tunnel in the Department of Aerospace and Mechanical 
Engineering Sciences. A biplane grid of round, polished dural rods (0.953cm 
diameter, mesh spacing ill = 5.08 em) was located 2.4 m from the end of the con- 
traction section. The mean velocity U was 7*7m/sec, giving a grid Reynolds 
number ( U M / v )  = 25,300. All measurements were made at a downstream loca- 
tion X / M  = 48, where X is the distance measured downstream from the centre 
of the grid. The longitudinal turbulence intensity ,/{uz) a t  this point was 1-6 % 
of the mean velocity. 

Van Atta & Chen (19686) have made quantitative measurements of the 
frequency range over which our example of grid turbulence can be considered 
locally isotropic. The energy spectrum of the transverse fluctuations (v) was 
compared to the spectrum deduced from the energy spectrum of the longitudinal 
fluctuations (u) using the isotropic relations. For the flow conditions of this 
experiment, they find good agreement and hence local isotropy for frequencies 
greater than about 80 Hz. 

Conventional analogue measurement techniques were used to determine the 
dissipation rate e = - &d({u2) + z(vz))/dt. The Kolmogoroff length scale 
Lk = (e/v3)-2 was 0.047 em, and the Kolomogoroff time scale r~ = (v/e)g was 
0.0143 see. 

A special probe was built to measure u a t  two closely spaced locations. Two 
tungsten wires (0.5 mm sensitive length, 0.0038 mm diameter) were mounted 
parallel to each other with 0.089 em longitudinal spacing ( M 2&,) and displaced 
laterally 0.0125 em. The lateral displacement was necessary to  prevent inter- 
ference from the forward wire and probe tips. The wires were operated in the 
linearized constant-temperature mode using DISA 55A01 anemometers and 
DISA 55D10 linearizers. The overheat ratios were about 0.3. The linearized 
velocity signals were preconditioned by first removing the d.c. level, then ampli- 
fying, and finally low-pass filtering. The two signals were then simultaneously 
sampled and recorded on-line by an analogue-digital converter and digital tape 
recorder. The sampling rate for each channel was 4170 samples/second, a value 
sufficiently high to prevent aliasing of the energy spectrum. The frequency 
characteristics of the system components were carefully matched to prevent 
interchannel phase errors. 

44-2 
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3. Digital cross-spectral analysis 
3.1. Phase speed calculations 

We denote two discrete time series by x ( t )  and y(t),  where t = 0, 1,  . . . , N - 1 ; N is 
the number of samples in the series. 

The discrete Fourier transforms of the time series are denoted by 

where f = 0, Aj, ..., ( N -  1) Af, X ( f )  and Y ( f )  are complex, and A7 is the 
sampling interval. The frequency interval Af of the transform is given by 
Af = 1/(NA7) = 1/T, where T is the record length. 

The energy spectra are 
E,(f) = X ( f )  X*(f)/T> 

E,(f) = Y ( f ) W ) / T >  
where * denotes the complex conjugate, and the bar denotes the ensemble 
average over the realizations. 

The cross-spectrum is 

S,,(f) = X ( f )  Y*(f)/T = C,,(f) -&?zt/(f)7 

R 2 ( f )  = S,,(f) f%,(f )lE,(f) E,( f ) ,  
$,,(f) = -tan-'(&,,(f)/Q,,(f)). 

where Cxg and Q,, are the co-spectrum and the quadrature-spectrum. 
The coherence R2t and phase q5 are given in terms of the spectra 

The phase defined in this way is the phase lead of zft) relative to y(t). The phase 
can alternatively be written as a time delay 7(f), where 

7 ( f )  = q 5 Z , ( f ) / W *  
The coherence plays the role of a correlation coefficient defined at  each frequency. 
It is a measure of the linear dependence of the two time series. By Schwarz's 
inequality, the coherence is bounded in the region 0 6 R2 6 1. In the next section, 
we will see how the coherence affects the reliability of our phase estimation. 

The phase speed, which is defined as 

C ( f )  = 2 n f W x & f )  

is the apparent propagation speed of spectral components of frequency f. This 
definition is the same as used earlier by Lumley ( 1  965). 

3.2. Phase errors 
Before applying the proposed technique it is important to appreciate the 
theoretical limitations involved in the estimates of the phase. The following 
discussion of phase errors is based on the assumption of Gaussianity. In grid 

t Some authors prefer to call R the coherence, and R2 the 'squared-coherence'. 
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turbulence the non-zero value of the triple-correlation indicates a non-Gaussian 
character, but the longitudinal fluctuations at  a single point, and even-order 
two-point correlations are closely represented by Gaussian processes (Frenkiel & 
Klebanoff 1965; Van Atta & Chen 1 9 6 8 ~ ) .  

The cross-spectral estimates of bivariate stochastic processes derived from 
finite length records are subject to a random error. For such Gaussian processes, 
the confidence limits for the phase angle $,g have been given by Goodman (1957) .  
There is a probability p that the true phase will lie in the interval $zv & A$, where 

1-R:  
sin2A$ = ~ [( 1 --p)-2’” - 11, 

R2, 
where u is the number of statistical degrees of freedom and R2, is the true value 
of coherence. For the ‘fast Fourier transform’ algorithm, the value of v is twice 
the number of realizations. Now, for u > 200, the 95 yo confidence limits for the 
coherence are less than 2 % of the measured value R2, for all values of 
R2 > 0.80 (Amos & Koopmans 1963). Under these conditions we can replace the 
true coherence R: by the measuredvalue R2 withlittle error in our estimate of A$. 

The 95 yo confidence limit for u > 200 reduces to 

where A$ is in radians. 
For the present data the coherence is essentially constant at  low frequencies, 

so that A$ is independent of frequency in that range. Since the phase decreases 
monotonically with decreasing frequency, a point will be reached where the 
magnitudes of $zv and A$zg are comparable. Such a point represents a lower 
bound on the range of frequencies where this technique is usable. 

3.3. InJEuence of signallnoise ratio 
In 9 3.2 we saw the key role that the coherence plays in the phase analysis. A high 
value of coherence is essential if reasonable estimates of the phase are to be 
obtained. A small probe separation was chosen to ensure that the turbulent 
fluctuations would be well correlated, i.e. highly coherent. However, the 
coherence estimate is strongly influenced by the noise superimposed on the 
signals. If the two signals x( t )  and y(t)  are linearly related, and if the noise signals 
are uncorrelated, then the coherence is given by (see, for example, Jenkins & 
Watts 1968) 1 

where N,, N, are the noiselsignal ratios for the two signals. We see now the 
importance of maintaining a high signal/noise ratio if the true coherence is to 
be measured. 

In  this experiment the noise was determined by the least count error of the 
A-D converter at a level equivalent to 0.2 cmlsec. Consequently, the decrease in 
energy with increasing frequency resulted in an increase in N ,  and therefore a 
decrease in R2. To improve the signal/noise ratio, it would suffice to increase 
the resolution of the A-D converter. 
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3.4. Data analysis 

The data were processed on a CDC 3600 computer. The simultaneous time series 
were divided into 100 pairs of records, each 0.492 see long containing 2048 data 
samples. The discrete Fourier transform of each record was calculated using the 
'fast Fourier transform ' algorithm. The frequency interval (Af) of the Fourier 
transforms was 2.04 Hz. The spectra were then calculated and ensemble averaged 
over the 100 records (200 degrees of freedom). Next, the spectra were smoothed 
using a simple Hanning filter (Blackman & Tukey 1958). This operation increases 
the effective number of degrees of freedom by about a factor of 2, with a sub- 
sequent decrease in the variance of the phase estimate. The coherence, phase, 
and phase speed were then computed from the smoothed spectra. Analysis of 
a set of data, including plotting, required about 7min of computer time. 

4. Results 
4.1. Simulated phase shift 

In order to demonstrate the capabilities of the technique, it was first used to 
measure an artificial phase shift. The anticipated phase shift was simulated 
electronically with an analogue low-pass filter. The filter attenuation and cut-off 
frequency were adjusted to give a linear phase shift in the range 0-600 Hz, with 
a value of 24' at 600 Hz. The filter thus produced a constant time delay of 11 1 psec, 
a good model of the 115psec delay expected during the experiments. The turbu- 
lence signal from one hot-wire was taken as the input: z(t). This signal was then 
phase shifted (time delayed) with the filter to give the second signal: y(t).  

The coherence spectrum obtained in the simulation is shown in figure 1. The 
coherence is 0.99 over most of the range, as one would expect, since the filter adds 
very little noise in the frequency band of interest. The loss of coherence above 
500 Hz is due to band-limiting of the input signal at  about 600 Hz with a second 
low-pass filter. This decreased the signal/noise ratio, and consequently the 
coherence (see 5 3.3). The associated phase spectrum is given in figure 2. Allowing 
for the statistical fluctuations, the phase varies linearly with frequency up to 
500 Hz. At this point the variance of the phase increases rapidly corresponding 
to the drop in coherence. Equally important, the phase plot begins to depart 
from a linear relation at  this point, indicating a bias in our estimate of the phase 
due to the drop in coherence. 

Since we are interested in generating a constant time-delay, we have also 
plotted the time-delay spectrum in figure 3. The influence of statistical phase 
errors on the measured time delay are clearly evident here. Below 50Hz the 
fluctuations overwhelm the measurement, making the technique unusable in this 
range. In the frequency range 100 Hz to 500 Hz the estimated time delay is about 
4 psec less the value inferred from the analogue measurement of the filter phase 
shift. This small time error is due to slight electronic differences in the sample 
and hold amplifiers used in the A-D converter. Above 500Hz the variance 
increases, and the estimate is negatively biased. 

From figure 3 we see that we are able to resolve time-delays considerably 
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FIGURE 2. Phase spectrum measured for two time series artificially 
phase shifted. ---, predicted spectrum. 

4.2. Phase speed measurements 

The one-dimensional velocity spectra E ( f )  measured by the two hot-wires are 
compared in figure 4. For clarity we have plotted only a few of the 1024 data 
points measured for each spectrum. The two spectra are practically identical, 
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smaller than the sampling interval of 250psec. If we were prepared to a.ccept 
accuracies of & 20 yo, we could measure time delays of 20psec under the present 
conditions. At 100Hz this corresponds to a phase shift of 0.7", an almost impos- 
sible measurement to  make by analogue methods. Herein lies the inherent 
advantage of the present technique. By examining the coherence and phase 
rather than the band-limited correlation, one can resolve very small time delays 
with the bonus of obtaining results over a wide range of frequencies with a single 
calculation. 
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indicating that the front hot-wire did not interfere with the rear hot-wire. How- 
ever, the rear hot-wire did detect some vortex shedding from the front probe 
supports. The shedding frequency was 3300Hz, well beyond the limits of the 
turbulent energy spectrum, and was readily removed by low-pass filtering. 

The coherence (figure 5) between the two signals was quite high, as one would 
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FIGURE 3. Time delay spectrum deduced from the data of figure 2. 
--_ , predicted spectrum, T = 111 psec. 
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expect at such close spacings. The maximum coherence was M 0-96, indicating 
that the signals are not exactly the same. The loss in maximum coherence was 
primarily due to the finite resolution of the wires, whose length was only about 
one-half the separation distance. Strong dips are present in the coherence 
spectrum at the line frequencies and all higher harmonics. Close inspection of the 
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FIGURE 5. Coherence spectrum measured between two hot-wires in a 
turbulent flow with a streamwise separation of 2Lr. 
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FIGURE 6. Phase spectrum measured between two hot-wires with a streamwise separation 
of 2Lk. - --, value predicted a t  the mean speed. The data shown is a computer generated 
plot of 294 data points with a frequency interval of 2.04 Hz. 

computed spectra indicated that one signal had an excessive amount of 60 Hz  
noise. This resulted in a locally reduced signal/noise ratio, which apparently 
accounts for the loss of coherence at 6OHz and its harmonics. The coherence 
drops to M 0.85 a t  600Hz, due to the decrease in signal-to-noise ratio as the 
energy spectrum falls off. 

The measured phase spectrum is shown in figure 6. We note a marked increase 
in the variability of g5xv as compared to the artificial phase shift case, a con- 
sequence of the reduced coherence. More significant is the deviation from the 
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expected curve a t  frequencies below 300Hz. This was a t  first interpreted as 
implying that the low frequencies propagate a t  less than the mean speed (Stegen 
& Van Atta 1968), a result in conflict with the conclusions of earlier investigators. 

As indicated earlier, great care was taken to prevent electronic phase errors. 
As a final check on the system, two wires were arranged in the same longitudinal 
plane, parallel, and laterally spaced 0.089 cm apart. Measurements of the phase 
spectrum for this configuration indicated a relative phase shift between the two 
anemometers in the frequency range 0-300 Hz. The time error inferred from the 
phase spectrum had a maximum value of about 40psec. This small difference 
would represent a negligible error for most anemometer measurements. The time 
delay is due to small electronic differences between the two anemometers. How- 
ever, we were unable to determine exactly where in the anemometers the 
mismatch occurs. 
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FIGURE 7. Phase speed spectrum deduced from the data of figure 6. 0 ,  data corrected for 
electronic mismatch of anemometer systems. ---, mean speed, U = 7.7 m/sec. 

To complete the demonstration of the technique, the measured anemometer 
time delay errors were used to correct the experimental data. The final measured 
phase speed spectrum is given in figure 7 .  The single points represent the corrected 
data, where the value has been averaged over a band 22-4Hz wide. Because of 
the large uncertainty at  low frequencies, no data is presented in the range 
0-80Hz. Above 300Hz the uncorrected data was plotted every 2.0Hz as 
originally calculated. The data indicates an average phase speed of 7.4 m/sec, 
compared to the mean speed of 7-7 m/sec. If we also account for the time errors 
introduced by the A-D converter, the average phase speed agrees with the mean 
speed within 5 1 yo. 

The present measurements are a systematic extension of the Fourier analysis 
techniques used to determine the energy spectrum of the velocity fluctuations. 
The measured phase speed is the propagation speed which can be associated with 
each frequency in the energy spectrum. We emphasize that this interpretation is 
valid only in the frequency range where the coherence remains high. The results 
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clearly demonstrate the validity of the technique. The variance of the estimate 
for this case is a little high for general application. However, the variance could 
be reduced to less than 4 yo by optimizing the statistics and probe configuration 
for a particular flow field. 

5. Summary 
Digital harmonic analysis employing the fast Fourier transform algorithm 

has provided an efficient means for measuring very small phase shifts between 
two time series. Using digital methods, a technique for measuring local phase 
speeds in turbulent velocity fields has been developed. In  developing the 
technique, we have drawn heavily upon the similar work by Munk, Snodgrass & 
Tucker (1959) in ocean waves. This study has emphasized the theoretical and 
practical considerations which limit the application of the technique. 
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